Anaerobic MBRs (AnMBRs) can provide the desired step towards sustainable wastewater treatment, broadening the range of application of anaerobic biotechnology to low-strength wastewaters (e.g. urban ones) or extreme environmental conditions (e.g. low operating temperatures). This alternative technology gathers the advantages of anaerobic treatment processes (e.g. low energy demand stemming from no aeration and energy recovery through methane production) jointly with the benefits of membrane technology (e.g. high quality effluent, and reduced space requirements). It is important to highlight that AnMBR may offer the possibility of operation in energy neutral or even being a net energy producer due to biogas generation. Other aspects that must be taken into account in AnMBR are the quality and nutrient recovery potential of the effluent and the low amount of sludge generated, which are of vital importance when assessing the environmental impact of a wastewater treatment plant (WWTP). The main aim of this Ph.D. thesis is to assess the economic and environmental sustainability of AnMBR technology for urban wastewater treatment at ambient temperature. Specifically, this thesis focusses on the following aspects: (1) development of a detailed and comprehensive plant-wide energy model for assessing the energy demand of different wastewater treatment systems at both steady- and unsteady-state conditions; (2) proposal of a design methodology for AnMBR technology and identification of optimal AnMBR-based configurations by applying an overall life cycle cost (LCC) analysis; (3) life cycle assessment (LCA) of AnMBR-based technology at different temperatures; and (4) evaluation of the overall sustainability (economic and environmental) of AnMBR for urban wastewater treatment. In this research work, a plant-wide energy model coupled to the extended version of the plant-wide mathematical model BNRM2 is proposed. The proposed energy model was used for assessing the energy performance of different wastewater treatment processes. In order to propose the guidelines for designing AnMBR at full-scale and to identify optimal AnMBR-based configurations, the proposed energy model and LCC were used. LCA was used to assess the environmental performance of AnMBR-based technology at different temperatures. An overall sustainability (economic and environmental) assessment was conducted for: (a) assessing the implications of design and operating decisions by including sensitivity and uncertainty analysis and navigating trade-offs across environmental and economic criteria.; and (b) comparing AnMBR to aerobic-based technologies for urban wastewater treatment. This Ph.D. thesis is enclosed in a national research project funded by the Spanish Ministry of Science and Innovation entitled ¿Using membrane technology for the energetic recovery of wastewater organic matter and the minimisation of the sludge produced¿ (MICINN project CTM2008-06809-C02-01/02). To obtain representative results that could be extrapolated to full-scale plants, this research work was carried out in an AnMBR system featuring industrial-scale hollow-fibre membrane units that was operated using effluent from the pre-treatment of the Carraixet WWTP (Valencia, Spain).
© 2001-2024 Fundación Dialnet · Todos los derechos reservados