Ayuda
Ir al contenido

Dialnet


Dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users

  • Autores: Ignacio Javier Benítez Sánchez
  • Directores de la Tesis: José Luis Díez Ruano (dir. tes.), Alfredo Quijano (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2015
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Pedro Albertos Pérez (presid.), Matilde Santos Peñas (secret.), Francisco Ruz Vila (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • The electricity sector is currently undergoing a process of liberalization and separation of roles, which is being implemented under the regulatory auspices of each Member State of the European Union and, therefore, with different speeds, perspectives and objectives that must converge on a common horizon, where Europe will benefit from an interconnected energy market in which producers and consumers can participate in free competition. This process of liberalization and separation of roles involves two consequences or, viewed another way, entails a major consequence from which other immediate consequence, as a necessity, is derived. The main consequence is the increased complexity in the management and supervision of a system, the electrical, increasingly interconnected and participatory, with connection of distributed energy sources, much of them from renewable sources, at different voltage levels and with different generation capacity at any point in the network. From this situation the other consequence is derived, which is the need to communicate information between agents, reliably, safely and quickly, and that this information is analyzed in the most effective way possible, to form part of the processes of decision taking that improve the observability and controllability of a system which is increasing in complexity and number of agents involved. With the evolution of Information and Communication Technologies (ICT), and the investments both in improving existing measurement and communications infrastructure, and taking the measurement and actuation capacity to a greater number of points in medium and low voltage networks, the availability of data that informs of the state of the network is increasingly higher and more complete. All these systems are part of the so-called Smart Grids, or intelligent networks of the future, a future which is not so far. One such source of information comes from the energy consumption of customers, measured on a regular basis (every hour, half hour or quarter-hour) and sent to the Distribution System Operators from the Smart Meters making use of Advanced Metering Infrastructure (AMI). This way, there is an increasingly amount of information on the energy consumption of customers, being stored in Big Data systems. This growing source of information demands specialized techniques which can take benefit from it, extracting a useful and summarized knowledge from it. This thesis deals with the use of this information of energy consumption from Smart Meters, in particular on the application of data mining techniques to obtain temporal patterns that characterize the users of electrical energy, grouping them according to these patterns in a small number of groups or clusters, that allow evaluating how users consume energy, both during the day and during a sequence of days, allowing to assess trends and predict future scenarios. For this, the current techniques are studied and, proving that the current works do not cover this objective, clustering or dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users are developed. These techniques are tested and validated on a database of hourly energy consumption values for a sample of residential customers in Spain during years 2008 and 2009. The results allow to observe both the characterization in consumption patterns of the different types of residential energy consumers, and their evolution over time, and to assess, for example, how the regulatory changes that occurred in Spain in the electricity sector during those years influenced in the temporal patterns of energy consumption.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno