Ayuda
Ir al contenido

Dialnet


Colloidal and molecular assemblies for bioengineering applications

  • Autores: Paula Pescador Álvarez
  • Directores de la Tesis: José Luis Toca Herrera (dir. tes.), Ioanis Katakis (dir. tes.)
  • Lectura: En la Universitat Rovira i Virgili ( España ) en 2007
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Francesc Xavier Rius Ferrus (presid.), Susana Rodríguez (secret.), Edwin Donath (voc.), Torsten Reese (voc.), Ricard Garcia Valls (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • La técnica de recubrimiento "capa por capa' (layer-by-layer, LbL) de superficies cargadas mediante materiales con carga opuesta es una herramienta versátil para la fabricación de ensamblados moleculares e interfaces funcionales. Sus principales ventajas sobre otras metodologías, como las monocapas autoensambladas (SAM) o la técnica de Langmuir-Blodgett, son una enorme flexibilidad combinada con su gran simplicidad y bajo coste. Con instrumentación sencilla y protocolos de preparación simples, es posible ensamblar estructuras complejas y estables con un control nanométrico sobre su composición y estructura.La metodología LbL es especialmente adecuada para la integración de biomoléculas (proteínas, lípidos, DNA) en multicapas funcionales, ya que el proceso de ensamblaje se lleva a cabo en condiciones suaves. Las propiedades biológicas de estos materiales se mantienen o incluso mejoran tras su incorporación en los films.Otra ventaja de esta técnica es que permite recubrir sustratos de virtualmente cualquier tamaño y forma con films funcionales de manera sencilla y controlada. De particular importancia ha sido la extensión del método a la modificación de partículas coloidales. Aparte de su interés desde un punto de vista fundamental y aplicado, los coloides constituyen herramientas de gran potencial para la creación de estructuras de diseño específico en los campos de la bio y nanotecnología. La funcionalización vía LbL de partículas coloidales permite integrar múltiples funcionalidades en las partículas, y proporciona además una ruta para la creación de estructuras tridimensionales que facilitan la transición desde la nano- a la micro- y macroescala.La técnica LbL ha supuesto también un gran avance en el desarrollo de sistemas electroquímicos. Diversos materiales electroactivos pueden ser incorporados en las multicapas, junto con otras especies que proporcionan funcionalidades adicionales. Además, parámetros críticos como el grosor del film, el transporte de materia y la conductividad pueden ajustarse con precisión en estas estructuras, incrementando la capacidad de control sobre el funcionamiento final del sistema. En particular, las estructuras LbL han encontrado numerosas aplicaciones en el área de los biosensores electroquímicos. Estos dispositivos proporcionan una interfaz entre funciones biológicas específicas y procesos de transducción electrónicos, y ofrecen una alternativa con gran potencial para el desarrollo de plataformas de biodetección integradas.En el presente trabajo, la técnica LbL se emplea para ensamblar films multicapa de enzimas y polielectrolitos en la superficie de micropartículas de sílice. Dos enzimas diferentes, glucosa oxidasa (GOx) y peroxidasa (HRP) son co-inmovilizadas junto con capas precursoras e intermedias de polielectrolitos. En los films resultantes se desarrolla una reacción enzimática secuencial, con la conversión inicial de glucosa en acido glucónico y peróxido de hidrógeno, catalizada por GOx, y la posterior reducción del peróxido de hidrógeno a agua por acción de la HRP. El enfoque secuencial LbL permite explorar la influencia de diferentes combinaciones de polielectrolitos sobre la inmovilización y funcionalidad de los enzimas. Técnicas como la citometría de flujo, microscopía confocal y electrónica y medidas espectrofotométricas proporcionan información sobre la interacción entre los diferentes componentes de las capas, así como sobre la estabilidad de las suspensiones coloidales y el comportamiento de los films en presencia de los diferentes sustratos enzimáticos.Una funcionalidad electroquímica se integra adicionalmente en estos films mediante la incorporación de un polímero redox a la estructura. De este modo, los eventos específicos que tienen lugar durante la catálisis enzimática se transducen en una señal eléctrica. Las partículas nanoestructuradas asumen un doble papel en el sistema final. Por una parte, actúan como sustratos de alta área superficial para la fabricación de microreactores enzimáticos. Además, los coloides se incorporan en un film de polímero redox y se inmovilizan en la superficie de electrodos de oro, actuando como elementos de construcción para la fabricación de un biosensor electroquímico que permite la detección de glucosa y peróxido de hidrógeno.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno