Ayuda
Ir al contenido

Dialnet


Nanopartículas magnéticas para aplicaciones biomédicas

  • Autores: Sonia García Jimeno
  • Directores de la Tesis: Joan Estelrich Latras (dir. tes.)
  • Lectura: En la Universitat de Barcelona ( España ) en 2013
  • Idioma: español
  • Tribunal Calificador de la Tesis: Roque Hidalgo Álvarez (presid.), María Antonia Busquets Viñas (secret.), Jacqueline Forcada Garcia (voc.)
  • Materias:
  • Enlaces
  • Resumen
    • El objetivo general que se ha planteado en este trabajo de tesis ha sido la obtención de nanopartículas magnéticas (NMPs) que puedan presentar aplicaciones biomédicas. El tipo de NPMs desarrolladas han sido, por una parte, magnetoliposomas, y, por otra, un ferrofluido formado por magnetita estabilizada con polietilenglicol (PEG). Como premisas de partida, se ha fijado que cualquier muestra obtenida de tener un tamaño inferior a 200 nm, estabilidad mínima de 24 horas, y un comportamiento propio de los ferrofluidos ante un campo magnético. Sobre aquellos productos que cumplían los citados requisitos se han ido introduciendo modificaciones hasta obtener un producto estable con las propiedades antes indicadas. Se estudiaron dos aplicaciones terapéuticas de las partículas sintetizadas: como sistemas adecuados para terapia hipertérmica, y como sistemas transportadores de fármacos dirigidos bajo la acción de un campo magnético. Los magnetoliposomas obtenidos encapsulaban o bien un ferrofluido aniónico comercial, o bien el ferrofluido obtenido con PEG en liposomas empleando el método de fase reversa seguida de extrusión. Estos liposomas presentaban un diámetro de partícula de unos 200 nm, eran superparamagnéticos, muy estables y con las tasas de encapsulación más elevadas que las obtenidas por otros métodos. Se ha obtenido un ferrofluido por co?precipitación de sales férricas en presencia de PEG. El PEG no estaba modificado y su interacción con la magnetita es de tipo físico. Se han obtenido nanopartículas de magnetita con un tamaño medio de 12 nm. Se ha estudiado el efecto de hipertermia y termoablación inducida de estas NPMs en fantoms, materiales con propiedades dieléctricas y de permitividad semejantes a los tejidos reales sobre los que se pretende aplicar la terapia. Se comprobó el funcionamiento de los aplicadores de radiación, una guía de onda y una antena de microondas, así como, el uso de las NPMs como potenciadores y como agentes para focalizar la energía en la zona deseada. Se demostró, que utilizando en conjunto el aplicador con las NPMs es posible focalizar la energía sobre el tumor evitando el calentamiento del tejido sano circundante, lograr incrementos de temperatura en el rango terapéutico y controlar los incrementos de temperatura en el tejido. Se ha estudiado la biodistribución de los magnetoliposomas en ratones a los que se les había inducido inflamación. Se confirmó que las NPMs se acumulan principalmente en el foco inflamatorio sin la necesidad de dirigirlos mediante un campo magnético externo. En un segundo estudio se observó que, además, si se le aplica en la zona inflamatoria un campo magnético externo, la cantidad de NPMs aumenta en el exudado, y disminuye en sangre, hígado y bazo. Esto demuestra que los magnetoliposomas pueden ser utilizados como vehículo de transporte, para dirigir fármacos a zonas de interés terapéutico, con lo que podríamos reducir la dosis de fármaco administrada y aumentar la eficacia del tratamiento y prevenir los efectos secundarios.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno