Ayuda
Ir al contenido

Dialnet


Sewage biogas energy valorization via solid oxide fuel cells

  • Autores: Nicolás De Arespacochaga Santiago
  • Directores de la Tesis: César Alberto Valderrama Angel (dir. tes.), José Luis Cortina Pallás (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2015
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Joan de Pablo Ribas (presid.), Francisco Javier Lafuente Sancho (secret.), Raúl Muñoz Torre (voc.), Massimo Santarelli (voc.), Maria José Martín Sánchez (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • A more sustainable and secure energy supply is required for the forthcoming generations; where the actual dependence on the fossil fuel reserves should be replaced by self-sufficiency and use of renewable energy resources. Conventional sewage treatment is an energy consuming process, or more specifically, an electricity consuming process. Notwithstanding, energy on Waste Water Treatment Plants is not only considered in terms of consumption reduction, but also in terms of production of renewable energy in form of biogas. Today, achieving energy self-sufficiency is limited by the low electrical efficiencies of conventional biogas-powered Combined Heat and Power systems; but fuel cell technology is appearing on the scene in the recent years offering both a higher electrical efficiency and a further reduced environmental impact. Biogas energy valorization in fuel cells combines a high-efficient technology for electrical generation, i.e.: fuel cell, with the use of a renewable fuel, i.e.: biogas. Raw biogas contains a wide range of contaminants, mainly sulfur and organic silicon compounds (siloxanes), which pose a risk to Solid Oxide Fuel Cell operation; hence biogas requires a thorough conditioning and cleaning process upstream the fuel cell unit. Moreover, monitoring of siloxanes levels remained somewhat controversial with discrepancies on optimal sampling procedure as well as quantification technique; hindering the design and operation of siloxanes removal technologies. This work is devoted to studying and validating the whole biogas energy valorization line, including the biogas treatment system and the fuel cell operation. The integration of low-cost biological desulphurization and deep polishing physico-chemical adsorption processes with a Solid Oxide Fuel Cell has been studied in an industrial 2.8 kWe pilot plant installed in a Waste Water Treatment Plant in Spain, showing that the stringent gas quality requirements of 0.5 ppmv S and 1 mg Si/Nm3 can be satisfied with over the long-term. The technical and economic comparison of Solid Oxide and Molten Carbonate Fuel Cell performance with conventional Internal Combustion Engines and Micro-Turbines has been also conducted for different plant sizes and raw biogas compositions, confirming the relevant role that fuel cells can play on carbon neutral sewage treatment; particularly in small- and medium-size plants. Today the final justification for biogas valorization in fuel cell systems needs to be found in environmental issues as some improvements both in the performance and costs are still required. Nonetheless, this thesis demonstrates that the economics for this next-generation technology are expected for the short-term. Further collaborative research between biogas producers, suppliers of biogas treatment systems and manufacturers of fuel cells is required in the near future for Solid Oxide Fuel Cell technology deployment in the sewage sector.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno