Ayuda
Ir al contenido

Dialnet


Resumen de Methods and models in signal processing for gait analysis using waist-worn accelerometer: a contribution to Parkinson’s disease

Taufique Sayeed

  • Parkinson's disease (PD) is a neurodegenerative disease that predominantly alters patients' motor performance and compromises the speed, the automaticity and fluidity of natural movements. After some years, patients fluctuate between periods in which they can move almost normally for some hours (ON state) and periods with motor disorders (OFF state). Reduced step length and inability of step are important symptoms associated with PD. Monitoring patients¿ step length helps to infer patients¿ motor state fluctuations during daily life and, therefore, enables neurologists to track the evolution of the disease and improve medication regimen. In this sense, MEMS accelerometers can be used to detect steps and to estimate the step length outside the laboratory setting during unconstrained daily life activities. This thesis presents the original contributions of the author in the field of human movement analysis based on MEMS accelerometers, specifically on step detection and step length estimation of patients with Parkinson's disease. In this thesis, a user-friendly position, the lateral side of the waist, is selected to locate a triaxial accelerometer. The position was selected to enhance comfortability and acceptability. Assuming this position, first, a new method for step detection has been developed for the signals captured by the accelerometer from this location. The method is validated on healthy persons and patients with Parkinson's disease while compared to current state-of-the-art methods, performing better than the existing ones. Second, current methods of selected step length estimators that were originally developed for the signals from lower back close to L4-L5 region are modified in order to be adapted to the new sensor positions. Results obtained from 25 PD patients are discussed and the effects of calibrating in each motor state are compared. A generic correction factor is also proposed and compared with the best method to use instead of individual calibration. Despite variable gait speed and different motor state, the new step detection method achieved overall accuracy of 96.76% in detecting steps. Comparing the original and adapted methods, adapted methods performs better than the original ones. The best one is with multiplying individual correction factors that consider left and right step length separately providing average error of 0.033 m. Finally, an adapted inverted pendulum (IP) model based step length estimators is proposed using the signals from left lateral side of waist. The model considers vertical displacement of waist as an inverted pendulum during right step.For left step, the displacement during single support and double support phase is considered as an inverted pendulum and a standard pendulum respectively.Results obtained from 25 PD patients are discussed.Validity and reliability of the new model is compared with three existing estimators. Experimental results show that ICE-CETpD estimates step length with higher accuracy than the three best contenders taken from the literature.The mean errors of this method during OFF state and ON states are 0.021m and 0.029m respectively.The standard deviation and RMSE shown as (SD) RMSE are (0.02)0.029m during OFF state and (0.027)0.038m during ON state. The intra-class correlations of proposed estimator with reference step length are above 0.9 during both motor states.The calibration of model parameters in each motor state is tested and found that the training sessions done with patients in ON state provide more accurate results than in OFF state. Given that training is in ON state, the advantage of this approach is that patients would not need to attend without medication in order to train the method.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus