Ayuda
Ir al contenido

Dialnet


Resumen de Specialization and reconfiguration of lightweight mobile processors for data-parallel applications

Milovan Duric

  • The worldwide utilization of mobile devices makes the segment of low power mobile processors leading in the entire computer industry. Customers demand low-cost, high-performance and energy-efficient mobile devices, which execute sophisticated mobile applications such as multimedia and 3D games. State-of-the-art mobile devices already utilize chip multiprocessors (CMP) with dedicated accelerators that exploit data-level parallelism (DLP) in these applications. Such heterogeneous system design enable the mobile processors to deliver the desired performance and efficiency. The heterogeneity however increases the processors complexity and manufacturing cost when adding extra special-purpose hardware for the accelerators. In this thesis, we propose new hardware techniques that leverage the available resources of a mobile CMP to achieve cost-effective acceleration of DLP workloads. Our techniques are inspired by classic vector architectures and the latest reconfigurable architectures, which both achieve high power efficiency when running DLP workloads. The high requirement of additional resources for these two architectures limits their applicability beyond high-performance computers. To achieve their advantages in mobile devices, we propose techniques that: 1) specialize the lightweight mobile cores for classic vector execution of DLP workloads; 2) dynamically tune the number of cores for the specialized execution; and 3) reconfigure a bulk of the existing general purpose execution resources into a compute hardware accelerator. Specialization enables one or more cores to process configurable large vector operands with new special purpose vector instructions. Reconfiguration goes one step further and allow the compute hardware in mobile cores to dynamically implement the entire functionality of diverse compute algorithms. The proposed specialization and reconfiguration techniques are applicable to a diverse range of general purpose processors available in mobile devices nowadays. However, we chose to implement and evaluate them on a lightweight processor based on the Explicit Data Graph Execution architecture, which we find promising for the research of low-power processors. The implemented techniques improve the mobile processor performance and the efficiency on its existing general purpose resources. The processor with enabled specialization/reconfiguration techniques efficiently exploits DLP without the extra cost of special-purpose accelerators.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus