Ayuda
Ir al contenido

Dialnet


Analysis and optimal configuration of distributed opportunistic scheduling techniques in wireless networks

  • Autores: Andrés García Saavedra
  • Directores de la Tesis: Pablo Serrano Yáñez-Mingot (dir. tes.), Albert Banchs (dir. tes.)
  • Lectura: En la Universidad Carlos III de Madrid ( España ) en 2013
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Arturo Azcorra Saloña (presid.), Antonio Fernández Anta (secret.), Sunghyun Choi (voc.)
  • Materias:
  • Enlaces
  • Resumen
    • The phenomenon of fading in wireless communications has traditionally been considered as a source of unreliability that needs to be mitigated. In contrast, Opportunistic Scheduling (OS) techniques exploit quick channel quality oscillations in fading links, during the assignment of transmission opportunities, to improve the performance of wireless networks. While centralized mechanisms rely on a central entity with global knowledge, Distributed Opportunistic Scheduling (DOS) techniques have recently been proposed to work in distributed networks, i.e., where either such a central entity is not available, or the communication overhead to feed timely information to this central entity is prohibitive. With DOS, each station contends for the channel with a certain access probability. If a contention is successful, the station measures the channel conditions and transmits if the channel quality is above a certain threshold. Otherwise, the station does not use the transmission opportunity, allowing all stations to recontend. Given the fact that different stations, in different time instances, experience different channel conditions, it is likely that the channel is used by a link with better conditions, improving overall performance. In this thesis we first propose ADOS, an adaptive mechanism that drives the system to an optimal allocation of resources in terms of proportional fairness. We show that this mechanism outperforms previous approaches, particularly in scenarios with non-saturated stations (that do not always have data to transmit). The distributed nature of DOS makes it particularly vulnerable to selfish users that seek to maximize their own performance at the expense of those that cooperate for the common welfare. We thus design a punishing mechanism, namely DOC, that (i) drives the system to the optimal point of operation when all stations follow the protocol, and (ii) removes any potential gain by deviating from it (and thus, the incentive to misbehave). Finally, we propose a novel allocation criterion, namely the EF criterion, to balance between the most energy-eficient configuration (where all resources are given to the most energy e cient devices) and the throughput-optimal allocation (where all devices evenly share the resources regardless of their power consumption). Due to the lack of models that accurately predict the power consumption behavior of wireless devices, we perform a thorough experimental study to devise a power consumption model that completes existing literature. Finally, we apply these findings to design an EF-optimal strategy in DOS networks. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno