Ayuda
Ir al contenido

Dialnet


Dynamics of Two Neuron Cellular Neural Networks

  • Autores: Mireia Viñoles Serra
  • Directores de la Tesis: Xavier Vilasís-Cardona (dir. tes.)
  • Lectura: En la Universitat Ramon Llull ( España ) en 2011
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Stanislaw Jaskowski (presid.), Ferran Mazzanti Castrillejo (secret.), Mario A. Di Blasi (voc.), Elisa Martínez Marroquín (voc.), Fernando Corinto (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Les xarxes neuronals cel·lulars altrament anomenades CNNs, són un tipus de sistema dinàmic que relaciona diferents elements que s'anomenen neurones via unes plantilles de paràmetres. Aquest sistema queda completament determinat coneixent quines són les entrades a la xarxa, les sortides i els paràmetres o pesos. En aquest treball fem un estudi exhaustiu sobre aquest tipus de xarxa en el cas més senzill on només hi intervenen dues neurones. Tot i la simplicitat del sistema, veurem que pot tenir una dinàmica molt rica. Primer de tot, revisem l'estabilitat d'aquest sistema des de dos punts de vista diferents. Usant la teoria de Lyapunov, trobem el rang de paràmetres en el que hem de treballar per aconseguir la convergència de la xarxa cap a un punt fix. Aquest mètode ens obre les portes per abordar els diferents tipus de problemes que es poden resoldre usant una xarxa neuronal cel·lular de dues neurones. D'altra banda, el comportament dinàmic de la CNN està determinat per la funció lineal a trossos que defineix les sortides del sistema. Això ens permet estudiar els diferents sistemes que apareixen en cada una de les regions on el sistema és lineal, aconseguint un estudi complet de l'estabilitat de la xarxa en funció de les posicions locals dels diferents punts d'equilibri del sistema. D'aquí obtenim bàsicament dos tipus de convergència, cap a un punt fix o bé cap a un cicle límit. Aquests resultats ens permeten organitzar aquest estudi bàsicament en aquests dos tipus de convergència. Entendre el sistema d'equacions diferencials que defineixen la CNN en dimensió 1 usant només dues neurones, ens permet trobar les dificultats intrínseques de les xarxes neuronals cel·lulars així com els possibles usos que els hi podem donar. A més, ens donarà les claus per a poder entendre el cas general. Un dels primers problemes que abordem és la dependència de les sortides del sistema respecte les condicions inicials. La funció de Lyapunov que usem en l'estudi de l'estabilitat es pot veure com una quàdrica si la pensem com a funció de les sortides. La posició i la geometria d'aquesta forma quadràtica ens permeten trobar condicions sobre els paràmetres que descriuen el sistema dinàmic. Treballant en aquestes regions aconseguim abolir el problema de la dependència. A partir d'aquí ja comencem a estudiar les diferents aplicacions de les CNN treballant en un rang de paràmetres on el sistema convergeix a un punt fix. Una primera aplicació la trobem usant aquest tipus de xarxa per a reproduir distribucions de probabilitat tipus Bernoulli usant altre cop la funció de Lyapunov emprada en l'estudi de l'estabilitat. Una altra aplicació apareix quan ens centrem a treballar dins del quadrat unitat. En aquest cas, el sistema és capaç de reproduir funcions lineals. L'existència de la funció de Lyapunov permet també de construir unes gràfiques que depenen dels paràmetres de la CNN que ens indiquen la relació que hi ha entre les entrades de la CNN i les sortides. Aquestes gràfiques ens donen un algoritme per a dissenyar plantilles de paràmetres reproduint aquestes relacions. També ens obren la porta a un nou problema: com composar diferents plantilles per aconseguir una determinada relació entrada¬sortida. Tot aquest estudi ens porta a pensar en buscar una relació funcional entre les entrades externes a la xarxa i les sortides. Com que les possibles sortides és un conjunt discret d'elements gràcies a la funció lineal a trossos, la correspondència entrada¬sortida es pot pensar com un problema de classificació on cada una de les classes està definida per les diferent possibles sortides. Pensant¬ho d'aquesta manera, estudiem quins problemes de classificació es poden resoldre usant una CNN de dues neurones i trobem quina relació hi ha entre els paràmetres de la CNN, les entrades i les sortides. Això ens permet trobar un mètode per a dissenyar plantilles per a cada problema concret de classificació. A més, els resultats obtinguts d'aquest estudi ens porten cap al problema de reproduir funcions Booleanes usant CNNs i ens mostren alguns dels límits que tenen les xarxes neuronals cel·lulars tot intentant reproduir el capçal de la màquina universal de Turing descoberta per Marvin Minsky l'any 1962. A partir d'aquí comencem a estudiar la xarxa neuronal cel·lular quan convergeix cap a un cicle límit. Basat en un exemple particular extret del llibre de L.O Chua, estudiem primer com trobar cicles límit en el cas que els paràmetres de la CNN que connecten les diferents neurones siguin antisimètrics. D'aquesta manera trobem en quin rang de paràmetres hem de treballar per assegurar que l'estat final de la xarxa sigui una corba tancada. A més ens dona la base per poder abordar el problema en el cas general. El comportament periòdic d'aquestes corbes ens incita primer a calcular aquest període per cada cicle i després a pensar en possibles aplicacions com ara usar les CNNs per a generar senyals de rellotge. Finalment, un cop estudiats els diferents tipus de comportament dinàmics i les seves possibles aplicacions, fem un estudi comparatiu de la xarxa neuronal cel·lular quan la sortida està definida per la funció lineal a trossos i quan està definida per la tangent hiperbòlica ja que moltes vegades en la literatura s'usa l'una en comptes de l'altra aprofitant la seva diferenciabilitat. Aquest estudi ens indica que no sempre es pot usar la tangent hiperbòlica en comptes de la funció lineal a trossos ja que la convergència del sistema és diferent en un segons com es defineixin les sortides de la CNN.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno