Ayuda
Ir al contenido

Dialnet


Resumen de Defect engineering strategies for solar grade silicon and their optimization by predictive simulation

Jasmin Hofstetter

  • Facing the shortage of hyper-pure Si due to the exponential growth of the photovoltaic (PV) market at the beginning of the last decade, R&D institutions and Si producers started to develop and apply alternative ways of Si purification for PV applications. The so-called solar grade silicon (SoG-Si) requires lower purity levels than electronic grade Si and therefore, gives space for cost reduction of PV solar energy. However, no standardized specifications of SoG-Si have been established so far and the adaptation of the solar cell fabrication process to lower-quality Si materials remains a challenge for solar cell producers. In this thesis, acceptable concentrations of different representative transition-metal impurities are calculated at different stages of the solar cell production chain: in the final device, in the multi-crystalline (mc) Si wafer, and in the Si feedstock material. Along the production chain, impurity concentrations are assumed to be altered by a standard industrial P diffusion gettering (PDG) during solar cell processing and by solid-liquid segregation during crystal growth. It is shown that the main reduction of total impurity concentrations takes place during crystallization whereas PDG during solar cell fabrication mainly allows the reduction of highly recombination active metal interstitials. Furthermore, it results that much higher concentrations of fast diffusing impurities like Fe and Cu may be present in the Si feedstock than slow diffusing ones like Cr and Ti. Fe is one of the most abundant and detrimental metal impurities in Si. Besides its presence in lower-quality feedstock materials, considerable Fe contamination takes place during mc-Si ingot growth via in-diffusion from the crucible walls. More than 50 % of mc-Si wafers originate from border and edge regions of the ingot so that an effective reduction of Fe during solar cell processing is essential to achieve high conversion efficiencies on mc-Si wafers. Therefore, a model is developed to simulate the kinetics of Fe-related defects during solar cell processing and predict solar cell efficiencies from the as-grown Fe concentration and distribution in mc-Si wafers. The Impurity-to-Efficiency (I2E) model is validated by simulating experiments carried out on wafers from different heights of an intentionally Fe-contaminated mc-Si ingot. The distribution of precipitated Fe in these wafers is measured by means of X-ray fluorescence microscopy and is used as input parameter for the simulations together with total and interstitial Fe concentrations pub lished for this material. As-grown and post-processed electron lifetimes and solar cell efficiencies are calculated assuming the time-temperature profile of a standard PDG during device processing. In those regions of the ingot where Fe is the main performance-limiting defect, good agreement between experimental and simulation results is achieved. Subsequently, the validated I2E model is used to study the efficacy of different gettering schemes on the reduction of interstitial Fe in mc-Si wafers of varying Fe contents and distributions. An extended PDG, consisting of P diffusion at high temperatures followed by slow cool down to room temperature (RT) or by low temperature annealing (LTA), is shown to potentially decrease Fei concentrations to a much higher extend than standard PDG does. During extended gettering an enhanced external gettering of Fei to the P-diffused layer is shown to dominate internal gettering effects like the precipitation of Fei to FeSi2 precipitates. It is also shown that, when PDG is followed by LTA, an optimum annealing temperature exists for any given processing time. Finally, theoretical findings obtained by simulations are tested experimentally. In a first experiment, different sets of p-type mc-Si sister wafers are subjected to high temperature annealing followed either by slow or by fast cool down to RT in different gaseous ambiences (N2, O2, or POCl3). On all wafers, as-grown and post-processed electron lifetimes and concentrations of Fei are measured. Experimental results confirm that internal gettering effects do not lead to an effective reduction of the Fei concentration. In contrast, an enhanced lifetime and a reduction of Fei are measured on all wafers that are subjected to P diffusion treatments. When P diffusion is followed by a slow cool down, these positive effects are even enhanced. The comparison to internal gettering experiments shows that external gettering to the P-diffused layer really seems to be the dominating effect during extended PDG. In a second experiment, different short LTA steps of 15 min at temperatures between 600 and 700oC are applied to different sets of mc-Si wafers after PDG. Again, as-grown and post-processed electron lifetimes and concentrations of Fei are measured. On the investigated wafers, the trends of post-processed lifetimes and Fei concentrations predicted by the simulations cannot be reproduced by experiments. Lifetime mappings of these wafers reveal large areas of high dislocation (DL) densities that inhibit the effective Fei extraction and limit electron lifetimes. However, on some of the investigated wafers, an enhanced lifetime increase in comparison to standard PDG is found within particular grains. Therefore, on mc-Si wafers with low DL densities, a short LTA treatment at optimum temperature is expected to lead to a considerable lifetime enhancement. It is easy to implement in the industrial production chain and can potentially lead to an increase of the solar cell efficiency of up to 0.4 % absolute. Resumen Para hacer frente a la reciente escasez de Si ultrapuro debido al crecimiento exponencial del mercado fotovoltaico (PV), las instituciones de I +D y los productores de silicio comenzaron a desarrollar y aplicar nuevos procesos de purificación del silicio para aplicaciones fotovoltaicas. El denominado silicio de calidad solar (SoG-Si) requiere niveles de pureza menores a las del Si de calidad electrónica y por lo tanto, da margen para la reducción del coste de la energía solar fotovoltaica. Sin embargo, hasta la fecha no existen especificaciones estandarizadas de SoG-Si y la adaptación del proceso de fabricación de células solares a materiales de Si de menor calidad sigue siendo un reto para los fabricantes de células solares. En esta tesis las concentraciones aceptables de diferentes impurezas metálicas representativas se calculan en diferentes etapas de la cadena de producción de la célula solar: en el dispositivo final, en la oblea de Si multicristalino (mc) y en el Si de partida. A lo largo de la cadena de producción, se supone que las concentraciones de impurezas son alteradas por un gettering durante la difusión de P (PDG), parte del procesamiento de célula solar, y por la segregación sólido-líquido durante el crecimiento del lingote. Se muestra que la principal reducción de las concentraciones totales de impurezas se consigue durante la cristalización mientras que el PDG permite sobre todo la reducción de átomos metálicos intersticiales que forman defectos de alta recombinación. Además, se muestra que las impurezas rápidas como Fe y Cu pueden estar presentes en el silicio de partida en concentraciones mucho más altas que las impurezas lentas como Cr y Ti. Fe es una de las impurezas metálicas más abundante y perjudicial en Si. Además de su presencia en materiales de partida de menor calidad, una considerable contaminación por Fe tiene lugar durante el crecimiento del lingote mc-Si a través de la difusión desde las paredes del crisol. Más del 50 % de las obleas de mc-Si vienen de las regiones del borde del lingote, de modo que una reducción efectiva del Fe durante el procesamiento de la célula solar es esencial para lograr altas eficiencias de conversión en obleas de mc-Si. Por ello en esta tesis se desarrolla un modelo para simular la cinética de los defectos de Fe durante el procesamiento de la célula solar y para predecir su eficiencia a partir de la concentración y distribución de Fe en obleas mc-Si. El modelo Impurity-to-Efficiency (I2E) es validado por la simulación de experimentos realizados en obleas de diferentes alturas de un lingote mc-Si intencionadamente contaminado con Fe. La distribución del Fe precipitado en estas obleas se mide por medio de la microscopía de fluorescencia de rayos X y se utiliza como parámetro de entrada para las simulaciones, junto con concentraciones de Fe total e intersticial publicadas para este material. Los tiempos de vida de electrones antes y después del procesado y la eficiencia de célula se calculan para un perfil de tiempo y temperatura industrial estándar de PDG. En las regiones del lingote donde los defectos de Fe son los principales limitantes del rendimiento se logra una buena coherencia entre los resultados experimentales y la simulación. Posteriormente, el modelo I2E validado se utiliza para estudiar la eficacia de diferentes esquemas de gettering en la reducción del Fe intersticial en obleas de mc-Si de diferentes contenidos y distribuciones de Fe. Se muestra que un PDG extendido, que consiste en la difusión de P a altas temperaturas seguida por un enfriamiento lento a temperatura ambiente (TA) o por un recocido a baja temperatura (LTA), disminuye las concentraciones de Fei en mayor medida que lo consigue un PDG estándar. Durante un PDG extendido la extracción de Fei a la capa sumidero de P domina a la reducción por gettering interno debida a fenómenos como el de la precipitación de Fei a precipitados de FeSi2. También se muestra que, cuando PDG es seguido por LTA, existe una temperatura óptima de recocido para cualquier tiempo de proceso dado. Por último, los resultados teóricos obtenidos mediante simulaciones se ponen a prueba experimentalmente. En un primer experimento, diferentes conjuntos de obleas vecinas de mc-Si tipo p se someten a un recocido a alta temperatura seguido por un enfriamiento rápido o lento a TA en diferentes ambientes gaseosos (N2, O2 o POCl3). Antes y después del procesado, se miden el tiempo de vida de electrones y la concentración de Fei en cada oblea. Se observa que durante un PDG extendido se consiguen mayores tiempos de vida y menores concentraciones de Fei frente a un PDG estándar. Además, los experimentos confirman que realmente la extracción de Fei a la capa sumidero de P es el efecto dominante frente al gettering interno. En un segundo experimento, diferentes conjuntos de obleas vecinas mc-Si se someten a diferentes pasos cortos de LTA después del PDG. En estas obleas, el aumento de tiempo de vida y la reducción de Fei predichos por las simulaciones no se pueden reproducir con los experimentos. Cartografías de tiempo de vida revelan grandes áreas de alta densidad de dislocaciones (DL) que inhiben la extracción eficaz de Fei y que limitan los tiempos de vida de los electrones. Sin embargo, en algunas de las obleas investigadas se observa un aumento del tiempo de vida dentro de algunos granos en comparación con PDG estándar. Por lo tanto, se espera que en obleas de mc-Si con bajas densidades de DL, un tratamiento corto de LTA a temperatura óptima conduzca a una mejora de tiempo de vida considerable. Es un tratamiento fácil de implementar en la cadena industrial de proceso y tiene el potencial de conducir a un aumento de la eficiencia de célula solar de hasta un 0,4 % absoluto.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus