Ayuda
Ir al contenido

Dialnet


Resumen de Micro and nanomecanical behavior of mullite-based environmental barrier coatings

Carlos Botero Vega

  • Mullite coatings deposited by chemical vapor deposition (CVD) have been introduced and proven as excellent candidates to protect silicon carbide (SiC) from severe pitting corrosion and recession, becoming part of the new generation of environmental barrier coatings (EBCs). In these coatings mullite columns nucleate from a thin vitreous silicon layer in contact with the substrate and can grow over a wide range of increasing Al/Si ratios in constant or graded compositions. This feature allows for obtaining Al-rich coatings at the outer surface (conferring superior corrosion protection to the substrate) while keeping the stoichiometric mullite composition at the interface (representing great adhesion because of the good match with SiC). Although the excellent performance of these coatings in corrosive environments has been proved, information about the mechanical behavior of these systems is quite limited. The mechanical properties and structural integrity of CVD mullite coatings on SiC substrates are key issues facing the implementation of these systems in real applications. The study of such aspects constitutes the basis of this investigation. Considering the compositional variations, microstructure, and thickness of CVD mullite coatings, it is essential to evaluate their mechanical properties, and the structural integrity of the coated system, from a local perspective. In this regard, nanoindentation and nanoscratch appear as the most suitable techniques for this purpose. This investigation is based on implementing nanoindentation and nanoscratch tests, together with advanced characterization techniques, to evaluate the main local mechanical properties of mullite-based EBCs as well as to investigate the structural integrity of the coated systems. In doing so, columnar mullite coatings composed of stoichiometric (¿ 3) and increasing (¿ 5, 6, 7, 8, 11) Al/Si ratios, as well as compositionally graded coatings, were accounted for. Regarding stoichiometric coatings, main mechanical properties; i.e. hardness (Hf), elastic modulus (Ef), yield strength (sy) and fracture toughness (Kf), are asessed by means of nanoindentation. As a consequence of the columnar nature of coatings as well as the vitreous silicon layer from which they grow, properties were found to be slightly lower than the ones reported for bulk stoichiometric mullite. Also, properties ascribed to the coated system such as energy of adhesion (Gint) and interface fracture toughness (Kint), are assessed. Nanoscratch tests demonstrate great resistance of coatings to the sliding contact, as considerable plastic deformation ocurrs without significant damage. The effect of coating composition on its mechanical behavior is studied through evaluation of specimens with increasing Al/Si ratios. Enrichment in Al produce hardening, stiffening and enbrittlement of mullite coatings. Nevertheless, nanoscratch tests show that structural integrity of the systems is satisfactory since no complete loss of the coating material is registered. An enhancement in Hf and Ef is also evidenced through the thickness of coatings with graded compositions. Nanoscratch tests performed in the cross section of compositionally graded mullite coatings show an optimum combination of stiffness/hardness and cohesive/adhesive scratch strength, as compared to coatings with stoichiometric or extreme Al-enriched compositions. Finally, temperature and corrosion effects on the mechanical behavior are investigated. In stoichiometric mullite, the effect of high temperature is an increase in Hf and Ef, accompanied by a decrease in Kc, whereas none of these properties are altered for Al-rich and the compositionally graded coatings. In addition, nanoscratch tests show that the effect of temperature and hot-corrosion on the structural integrity of tested coatings may be considered as negligible. This is an interesting finding as CVD mullite coatings are expected to be used in gas turbines, under sam


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus