Ayuda
Ir al contenido

Dialnet


Proposal and development of a highly modular and scalable self-adaptive hardware architecture with parallel processing capability

  • Autores: Javier Evandro Soto Vargas
  • Directores de la Tesis: Juan Manuel Moreno Arostegui (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2014
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Gilles Sassatelli (presid.), José Antonio Rubio Solà (secret.), Enrique Cantó (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • This dissertation describes a novel unconventional self-adaptive hardware architecture with capacity for parallel processing. For scalability issues, this bioinspired architecture is based on a regular array of homogeneous cells. The proposed programmable architecture implements in a distributed way self-adaptive capabilities including self-placement and self-routing which, due to its intrinsic design, enable the development of systems with runtime reconfiguration, self-repair and/or fault tolerance capabilities. The physical implementation of this architecture is composed of two-layers, interconnected cells in the first level and interconnected switch and pin matrices in the second level. The cell is the basic element of the proposed self-adaptive architecture. Any application scheduled to the system has to be organized in components, where each component is composed by one or more interconnected cells. The interconnection of cells inside a component is made at cell level (first layer), while the physical interconnections of components are made in the second layer. Additionally, two layers are defined as conceptual organization for the implementation of general purpose applications: the SANE and the SANE assembly. The Self-Adaptive Networked Entity (SANE) is composed by a group of components. This is the basic self-adaptive computing system. It has the ability to monitor its local environment and its internal computation process. The SANE-Assembly (SANE-ASM) is composed by a group of interconnected SANEs. The processing capabilities of the cell are included in its Functional Unit (FU), which can be described as a four-core configurable multicomputer. The FU includes twelve programmable configuration modes, i.e., each cell permits to select from one to four processors working in parallel, with different size of program and data memories. The self-adaptive capabilities of the cell are executed mainly by the Cell Configuration Unit (CCU). The self-placement algorithm is responsible for finding out the most suitable position in the cell array to insert the new cell of a component. The self-routing algorithm permits interconnecting the ports of the FU of two cells through the cell ports. The self-placement and self-routing processes allow for performing complex functionality changes in real time, these processes endow the system with enhanced functionality, enabling the system to change itself, this allows for the implementation of run-time self-configuration, without the need for any configuration manager. The architecture proposed includes two mechanisms of fault tolerance. One of these is the Dynamic Fault Tolerance Scaling Technique, that has the ability to create and eliminate the redundant copies of the functional section of a specific application. The other mechanism of fault tolerance is a dedicated or static Fault Tolerance System. It provides redundant processing capabilities that are working continuously. When a failure in the execution of a program is detected, the processors of the cell are stopped and the self-elimination and self-replication processes start for the cell (or cells) involved in the failure. An FPGA-based prototype and a software tool have been built for demonstration purposes. The prototype includes all the self-adaptive capabilities described in this dissertation. With the purpose of having a complete development system, the software tool SANE Project Developer (SPD) has been implemented. The SPD is an Integrated Development Environment (IDE) that allows generating the memory initialization data for the control microprocessor inside the prototype.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno