Esta tesis presenta la implementación de un innovador sistema de comercio automatizado que utiliza tres importantes análisis para determinar lugares y momentos de inversión. Para ello, este trabajo profundiza en sistemas automáticos de comercio y estudia series temporales de precios históricos pertenecientes a empresas que cotizan en el mercado bursátil. Estudiamos y clasifcamos las series temporales mediante el uso de una novedosa metodología basada en compresores de software. Este nuevo enfoque permite un estudio teórico de la formación de precios que demuestra resultados de divergencia entre precios reales de mercado y precios modelados mediante paseos aleatorios, apoyando así el desarrollo de modelos predictivos basados en el análisis de patrones históricos como los descritos en este documento. Además, esta metodología nos permite estudiar el comportamiento de series temporales de precios históricos en distintos sectores industriales mediante la búsqueda de patrones en empresas pertenecientes al mismo sector. Los resultados muestran agrupaciones que indican tendencias de mercado compartidas y ,por tanto, señalan que la inclusión de un análisis industrial puede reportar ventajas en la toma de decisiones de inversión. Comprobada la factibilidad de un sistema de predicción basado en series temporales y demostrada la existencia de tendencias macroeconómicas en las diferentes industrias, proponemos el desarrollo del sistema completo a través de diferentes etapas. Iterativamente y mediante varias aproximaciones, testeamos y analizamos las piezas que componen el sistema nal. Las primeras fases describen un sistema de comercio automatizado, basado en análisis técnico y fundamental de empresas, que presenta altos rendimientos y reduce el riesgo de pérdidas. El sistema utiliza un motor de optimización guiado por una versión modi cada de un algoritmo genético el la que presentamos operadores innovadores que proporcionan mecanismos para evitar una convergencia prematura del algoritmo y mejorar los resultados de rendimiento nales. Utilizando este mismo sistema de comercio automático proponemos técnicas de optimización novedosas en relación a uno de los problemas más característicos de estos sistemas, el tiempo de ejecución. Presentamos la paralelización del sistema de comercio automatizado mediante dos técnicas de computación paralela, computación distribuida y procesamiento grá co. Ambas arquitecturas presentan aceleraciones elevadas alcanzando los x50 y x256 respectivamente. Estápas posteriores presentan un cambio de metodologia de optimización, algoritmos genéticos por evolución gramatical, que nos permite comparar ambas estrategias e implementar características más avanzadas como reglas más complejas o la auto-generación de nuevos indicadores técnicos. Testearemos, con datos nancieros recientes, varios sistemas de comercio basados en diferentes funciones de aptitud, incluyendo una innovadora versión multi-objetivo, que nos permitirán analizar las ventajas de cada función de aptitud. Finalmente, describimos y testeamos la metodología del sistema de comercio automatizado basado en una doble capa de gramáticas evolutivas y que combina un análisis técnico, fundamental y macroeconómico en un análisis top-down híbrido. Los resultados obtenidos muestran rendimientos medios del 30% con muy pocas operaciones de perdidas.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados