Gert de Cooman, Enrique Miranda Menéndez
Un funcional positivo y normalizado en el conjunto de las funciones continuas y acotadas puede caracterizarse como la integral con respecto a una funci´on de probabilidad s -aditiva, por el Teorema de Representaci´on de F. Riesz. En este art´ýculo, estudiamos las extensiones finitamente aditivas de un funcional de este tipo al espacio de las funciones acotadas, y demostramos que est´an determinadas por la extensi´on de Riesz a las funciones semicontinuas por abajo. Nuestros resultados establecen adem´as una conexi´on con la aproximaci´on a la teor´ýa de integraci´on de Daniell, con las previsiones inferiores coherentes de Walley, y con el Teorema de Representaci´on de de Finetti para variables intercambiables.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados