Ayuda
Ir al contenido

Dialnet


On downside risk predictability through liquidity and trading activity: a quantile regression approach

    1. [1] Universidad de Castilla-La Mancha

      Universidad de Castilla-La Mancha

      Ciudad Real, España

    2. [2] Universitat d'Alacant

      Universitat d'Alacant

      Alicante, España

  • Localización: Working papers = Documentos de trabajo: Serie AD, Nº. 14, 2011, págs. 1-38
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Most downside risk models implicitly assume that returns are a sufficient statistic with which to forecast the daily conditional distribution of a portfolio. In this paper, we address this question empirically and analyze if the variables that proxy for market liquidity and trading conditions convey valid information to forecast the quantiles of the conditional distribution of several representative market portfolios. Using quantile regression techniques, we report evidence of predictability that can be exploited to improve. Value at Risk forecasts. Including trading- and spread-related variables improves considerably the forecasting performance.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno