Ayuda
Ir al contenido

Dialnet


Convergence of the centered maximum of log-correlated Gaussian fields

    1. [1] University of Chicago

      University of Chicago

      City of Chicago, Estados Unidos

    2. [2] New York University

      New York University

      Estados Unidos

    3. [3] Indian Institute of Management Bangalore(India)
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 45, Nº. 6, 1, 2017, págs. 3886-3928
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We show that the centered maximum of a sequence of logarithmically correlated Gaussian fields in any dimension converges in distribution, under the assumption that the covariances of the fields converge in a suitable sense. We identify the limit as a randomly shifted Gumbel distribution, and characterize the random shift as the limit in distribution of a sequence of random variables, reminiscent of the derivative martingale in the theory of branching random walk and Gaussian chaos. We also discuss applications of the main convergence theorem and discuss examples that show that for logarithmically correlated fields; some additional structural assumptions of the type we make are needed for convergence of the centered maximum.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno