Polysaccharides, common components of natural products extensively studied as dietary supplements and functional foods, have been found to have various activities. In the present study, a water-soluble polysaccharide, namely GBSP3a, was isolated and purified from G. biloba sarcotesta. The anti-inflammatory activity of GBSP3a in lipopolysaccharide (LPS)-induced RAW264.7 macrophages and the potential underlying molecular mechanisms were then assessed. RESULTS GBSP3a exerted its anti-inflammatory effect by remarkably inhibiting the secretion of pro-inflammatory mediators and cytokines, including nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1? (IL-1?) in LPS-stimulated RAW264.7 macrophages. Excessive mRNA and protein expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were dose-dependently inhibited by GBSP3a in LPS-stimulated RAW264.7 cells. Further research suggested that the anti-inflammatory effect of GBSP3a can be attributed to the modulation of the NF-?B and MAPK signaling pathways. CONCLUSION GBSP3a exhibits anti-inflammatory activity and exerts its anti-inflammatory effect probably through suppressing both NF-?B and MAPK signaling pathway, indicating that GBSP3a could be used for the development of anti-inflammatory agent or nutraceuticals. ? 2018 Society of Chemical Industry
© 2001-2025 Fundación Dialnet · Todos los derechos reservados