Ayuda
Ir al contenido

Dialnet


Minimum density power divergence estimator for GARCH models

  • Autores: Sangyeol Lee, Junmo Song
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 18, Nº. 2, 2009, págs. 316-341
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we study the robust estimation for the generalized autoregressive conditional heteroscedastic (GARCH) models with Gaussian errors. As a robust estimator, we consider a minimum density power divergence estimator (MDPDE) proposed by Basu et al. (Biometrika 85:549–559, 1998). It is shown that the MDPDE is strongly consistent and asymptotically normal. Our simulation study demonstrates that the MDPDE has robust properties in contrast to the maximum likelihood estimator. A real data analysis is performed for illustration.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno