David DeFranza, Himanshu Mishra, Arul Mishra
Language provides an ever-present context for our cognitions and has the ability to shape them. Languages across the world can be gendered (language in which the form of noun, verb, or pronoun is presented as female or male) versus genderless. In an ongoing debate, one stream of research suggests that gendered languages are more likely to display gender prejudice than genderless languages. However, another stream of research suggests that language does not have the ability to shape gender prejudice. In this research, we contribute to the debate by using a Natural Language Processing (NLP) method which captures the meaning of a word from the context in which it occurs. Using text data from Wikipedia and the Common Crawl project (that contains text from billions of publicly facing websites) across 45 world languages, covering the majority of the world’s population, we test for gender prejudice in gendered and genderless languages. We find that gender prejudice occurs more in gendered rather than genderless languages. Moreover, we examine whether genderedness of language influences the stereotypic dimensions of warmth and competence utilizing the same NLP method. (PsycInfo Database Record (c) 2020 APA, all rights reserved)
© 2001-2024 Fundación Dialnet · Todos los derechos reservados