Ayuda
Ir al contenido

Dialnet


Toward Educational Sustainability: An AI System for Identifying and Preventing Student Dropout

    1. [1] Universidad de Medellín

      Universidad de Medellín

      Colombia

    2. [2] Universidad de La Frontera

      Universidad de La Frontera

      Temuco, Chile

    3. [3] Universidade de Aveiro

      Universidade de Aveiro

      Vera Cruz, Portugal

    4. [4] Servicio Nacional de Aprendizaje (SENA), Bogotá, Colombia
  • Localización: Revista Iberoamericana de Tecnologías del Aprendizaje: IEEE-RITA, ISSN 1932-8540, Vol. 19, Nº. 1, 2024, págs. 100-110
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The design and development of a web application to identify a high or low probability of student dropout at the National Learning Service (SENA) in Colombia, aiming to streamline the process of identifying and supporting potential candidates for assistance provided by the institution through the student welfare department. Throughout the development, socioeconomic variables with the highest impact on characterized academic dropout processes to create a dataset. This dataset was then utilized with various artificial intelligence techniques explored in Machine Learning (Decision Trees, K-means, and Regression), ultimately determining the most effective algorithm for integration into the Software. The decision tree classification technique emerged as the most effective, achieving an impressive accuracy of 91% and a minimal error rate of 9%, substantiating its state-of-the-art standing. As a result, this Software has optimized processes within the Student Welfare Department at SENA and is adaptable for use in any higher education institution.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno