Ayuda
Ir al contenido

Dialnet


Resumen de Data mining para determinar patrones del comportamiento de datos meteorológicos

Jorge L. Huere Peña, Jose Gave Chagua, Russbelt Yaulilahua Huacho, William Salas, Teresa Jesús Gonzales Huamán, Jose Ayuque Rojas

  • El libro es una adaptación de una investigación presentada a la Universidad Nacional de Huancavelica, que tuvo como objetivo determinar patrones de comportamiento de datos obtenidos mediante éstas técnicas, de las variables meteorológicas en la ciudad de Huancavelica (Perú) como son: la temperatura ambiental, presión atmosférica, humedad atmosférica, velocidad del viento, radiación solar, radiación ultra violeta y precipitación pluvial utilizando para ello una estación meteorológica automatizada de la compañía Weather Link, Marca DAVIS, Modelo Vantage Pro y una consola para el almacenamiento de datos Vantage Pro en texto plano y que posteriormente fueron procesados, descritos y analizados usando el software SPSS Statistical y WRPLOT en el caso particular de la variable dirección del viento y para la determinación de comportamientos y patrones se usó la metodología CRISP-DM. Los resultados obtenidos fueron clúster de las variables meteorológicas con algoritmos de aprendizaje no supervisado y predicciones de la variable precipitación pluvial con algoritmos de aprendizaje supervisados obteniendo 84,9% de probabilidades de éxito en el pronóstico y en el caso de los clúster grupos de cuatro y diez significativamente diferentes.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus