The food industry, concretely the post-harvest sector, needs to innovate in their production processes, optimizing them to make their activities profitable, guaranteeing quality products capable of satisfying the needs of consumers.
The present doctoral thesis focuses on evaluating the potential of visible and near infrared spectroscopy (VIS-NIR) for the characterization and inspection of fruit quality both off-line and in real time in automated processes.
Firstly, the viability of the technique was studied at the laboratory level in a static mode (off-line), in order to know and optimise the measurement conditions. Subsequently, the internal and external quality of different types of fruits such as persimmon, nectarine and mango were evaluated. Secondly, an automation of the inspection processes was carried out through the development of new in-line prototypes. For this purpose, and with the aim of completing and corroborating the results obtained in a static mode, the integration of two VIS-NIR probes in a robotic gripper capable of manipulating mangoes was studied. Finally, the integration of a VIS-NIR probe to a conveyor belt was studied as an in-line monitoring tool on the inspection process of different apple varieties.
The results obtained in static mode have shown that VIS-NIR spectroscopy is a very promising non-destructive method to predict the astringency in persimmon. Likewise, it has demonstrated to be an adequate tool to classify 100% between nectarine varieties such as 'Big Top' and 'Diamond Ray' with very similar external and internal appearance, but with different organoleptic properties. Similarly, it was possible to classify 100% varieties such as 'Big Top' and 'Magique' with external appearance and similar composition but different pulp colour. An internal quality index (IQI) was developed to evaluate the quality of nectarines, which can be predicted through VIS-NIR spectroscopy. Regarding the off-line work carried out with mangoes of 'Osteen' variety, it was possible to predict its internal quality through the indexes of maturity (RPI) and quality (IQI) with a high performance. Moreover, the experimental tests carried out with these same mangoes under the non-destructive manipulation of a robotic gripper, showed that the best models were able to predict both the mechanical firmness, the soluble solids content, the brightness of the pulp, as well as the RPI index of the samples based on the information obtained by the accelerometers installed on the fingers of the robotic gripper.
Regarding the tests carried out in an in-line mode, the first developed prototype was based on the integration of two VIS-NIR probes in a robotic gripper fitted with two accelerometers. The developed system allowed reaching a good estimation of mango quality through the RPI index. In this way, it was demonstrated that it was possible to obtain a similar prediction working in-line as off-line mode for the prediction of the same quality index in mangoes. The second developed in-line prototype is based on the integration of a VIS-NIR probe in a conveyor belt for the identification of different varieties and origins of apples, achieving a success rate of 98% with the system. The developed prototype allowed to register classification results as good as those carried out off-line with, for example, nectarine.
In this way, it can be concluded that VIS-NIR spectroscopy allows monitoring the quality and classifying post-harvest fruit in both off-line and in-line mode, being a tool that allows improving and guaranteeing the correct quality and food safety. The new developed prototypes provide clear advantages over the traditional processes performed by hand, such as the reduction of inspection time, the reduction of the amount of waste generated by destructive quality analysis and the possibility of inspecting full production, obtaining a more standardised analysis of the quality of the products.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados