The aim of this investigation was to improve the barrier and mechanical properties of gluten films and further explore their application in the packaging of seasonings. The effects of flaxseed gum (FG), oligomeric procyanidins (OPCs), and lauric acid (LA) on the water vapor permeability (WVP), mechanical properties, and peroxide value (POV) were determined. FG and OPCs improved the WVP properties of the gluten films, whereas LA significantly improved the oxygen‐barrier properties. The FG/OPCs/LA/GP composite film was then optimized, and the morphological, microstructural, and thermal properties of the composite gluten film were investigated by scanning electron microscopy, atomic force microscopy, surface hydrophobicity analysis; Fourier transform infrared spectroscopy; thermal gravimetric analysis, respectively. The results confirmed that gluten is compatible with FG, OPCs, and LA, thereby leading to the formation of a more uniform, dense, and hydrophobic film. The changes in the preservation properties (appearance, POV, and acid value) of the composite gluten film for oil, salt, and vegetable packaging were also examined. The composite gluten film maintained some degree of seasoning packaging capacity over a 75‐day storage period, indicating its potential for uses as a packaging material for seasonings in food production. The edible composite film will be produced in industry according to the data provided in our paper; the film can be used as packaging material for seasonings in food production.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados