Ayuda
Ir al contenido

Dialnet


Explorations of the brocard point

  • Autores: Theodore Hodgson, Hannah Evans, Kelly Lindsey, Daniel McGee, Daniel Ness (coord.), Nick Wasserman (coord.), Benjamin Dickman (coord.)
  • Localización: Mathematics teacher, ISSN-e 2330-0582, ISSN 0025-5769, Vol. 112, Nº 5, 2019, págs. 390-394
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Hodgson et al talk about explorations of the Brocard Point. One of the surprising characteristics of triangles is the number of points that lie at the intersection of three, similarly defined lines, segments, or rays. The centroid of a triangle, for instance, is the intersection of the three medians; the in-center is the intersection of the three angle bisectors; the circumcenter is the intersection of the perpendicular bisectors of the three sides; and the orthocenter is the intersection of the three altitudes. Unlike the prior points, which have been known to mathematicians for millennia, the Brocard point is a relatively recent discovery. Like the prior points, however, the Brocard point is easily accessible to secondary students and can serve as a rich context for explorations.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno