Ayuda
Ir al contenido

Dialnet


Development and characterization of gel-like structures from aquatic biomass for food applications

  • Autores: C. Fontes
  • Directores de la Tesis: Amparo Lopez Rubio (dir. tes.), Marta Martínez Sanz (dir. tes.), Isabel Escriche Roberto (tut. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2022
  • Idioma: español
  • Tribunal Calificador de la Tesis: Amparo Chiralt Boix (presid.), María Rosa Aguilar de Armas (secret.), Mar Villamiel (voc.)
  • Programa de doctorado: Programa de Doctorado en Ciencia, Tecnología y Gestión Alimentaria por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • The aim of this doctoral thesis was to design and characterize the structure of gel-like structures based on polysaccharides extracted from aquatic biomass, with interest for food-related applications. The properties of polysaccharides extracted from seaweeds and aquatic plants make them suitable to produce a range of gel-like structures based on the formation of interconnected networks, such as hydrogels, aerogels and emulsion-gels.

      In the first part of this thesis, the different gelation mechanism of sulphated polysaccharides and the parameters affecting the structure and functional properties of the obtained hydrogels were investigated. Based on the results, the potential application of agar and k-carrageenan hydrogels and aerogels to encapsulate a model food protein such as casein was evaluated, thus exploring the protective effect against the enzymatic hydrolysis upon simulated gastrointestinal digestions.

      In the second part of this thesis, aerogel structures were developed by valorising an underutilized waste biomass source such as Arundo donax. This biomass was used to generate cellulosic fractions with different purification degrees and water-soluble bioactive extracts, which were subsequently used to produce hybrid bioactive aerogels. The highly porous structure and high sorption capacity of aerogels make them excellent candidates for the replacement of absorbent pads to maintain the quality of packaged meat products.

      Emulsion-gels are recognized for their great potential as functional ingredients in the food industry to modify texture and for solid fat replacement. Moreover, they can be used as a delivery vehicle for the controlled release of fat-soluble bioactive compounds. Thus, in the last part, the nature of interactions between the components in polysaccharide-based emulsion-gel formulations was investigated and related to their structure and mechanical and rheological behavior. After studying the gelation mechanism of carrageenan emulsion-gels, these systems were adapted and used for two different applications relevant to the food and biomedicine sectors. Firstly, oil-filled gel-like structures from agar and k-carrageenan emulsion-gels and oil-filled aerogels were produced and evaluated as carriers of a lipophilic bioactive such as curcumin. The results showed that the polysaccharide type and the physical state of the gel network had an impact on the structure of the digestion products.

      On the other hand, the potential of emulsion-gels based on sulphated polysaccharides (k-carrageenan and agar) for the production of tissue mimicking phantoms was evaluated. The results evidence that the agar emulsion-gels are suitable to produce materials simulating the dielectric properties to mimic low- and high-water content tissues.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno